MATH
Chemin du Cyclotron 2/L7.01.02
1348 Louvain-la-Neuve
- Accueil
- Répertoire
- Jean Van Schaftingen
Jean Van Schaftingen
Professeur
- Diplômes
Année Label Institution 2002 Ingénieur civil en mathématiques appliquées Université catholique de Louvain 2003 Diplôme d'études approfondies interuniversitaire en mathématiques Université catholique de Louvain 2005 Docteur en sciences Université catholique de Louvain
Schikorra, Armin ; Van Schaftingen, Jean. An estimate of the Hopf degree of fractional Sobolev mappings. In: Proceedings of the American Mathematical Society, Vol. 148, no.7, p. 2877-2891 (2020). doi:10.1090/proc/15026.
Nguyen, Hoai-Minh ; Van Schaftingen, Jean. Characterization of the traces on the boundary of functions in magnetic Sobolev spaces. In: Advances in Mathematics, Vol. 371, p. 107246 (2020). doi:10.1016/j.aim.2020.107246.
Chanillo, Sagun ; Van Schaftingen, Jean. Estimates of the amplitude of holonomies by the curvature of a connection on a bundle. In: Pure and Applied Functional Analysis, Vol. 5, no.4, p. 891-897 (2020).
Cassani, Daniele ; Van Schaftingen, Jean ; Zhang, Jianjun. Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent. In: Proceedings / The Royal Society of Edinburgh. Section A, Mathematics, Vol. 150, no. 3, p. 1377–1400. (2020). doi:10.1017/prm.2018.135.
Dekeyser, Justin ; Van Schaftingen, Jean. Range convergence monotonicity for vector measures and range monotonicity of the mass. In: Ricerche di Matematica, Vol. 69, no. 1, p. 293-326 (2020). doi:10.1007/s11587-019-00463-x.
Dekeyser, Justin ; Van Schaftingen, Jean. Vortex Motion for the Lake Equations. In: Communications in Mathematical Physics, Vol. 375, no.2, p. 1459-1501 (2020). doi:10.1007/s00220-020-03742-z.
Van Schaftingen, Jean. Estimates by gap potentials of free homotopy decompositions of critical Sobolev maps. In: Advances in Nonlinear Analysis, Vol. 9, no.1, p. 1214-1250 (2019). doi:10.1515/anona-2020-0047.
Convent, Alexandra ; Van Schaftingen, Jean. Higher order intrinsic weak differentiability and Sobolev spaces between manifolds. In: Advances in Calculus of Variations, Vol. 12, no. 3, p. 303–332 (2019). doi:10.1515/acv-2017-0008.
Spector, Daniel ; Van Schaftingen, Jean. Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma. In: Rendiconti Lincei - Matematica e Applicazioni, Vol. 30, no.3, p. 413-436 (2019). doi:10.4171/rlm/854.
Bonheure, Denis ; Nys, Manon ; Van Schaftingen, Jean. Properties of ground states of nonlinear Schrödinger equations under a weak constant magnetic field. In: Journal de Mathématiques Pures et Appliquées, Vol. 124, no. 1, p. 123-168 (2019). doi:10.1016/j.matpur.2018.05.007.
Monteil, Antonin ; Van Schaftingen, Jean. Uniform boundedness principles for Sobolev maps into manifolds. In: Annales de l'Institut Henri Poincaré - C - Non Linear Analysis, Vol. 36, no.2, p. 417-449 (2019). doi:10.1016/j.anihpc.2018.06.002.
Van Schaftingen, Jean ; Xia, Jiankang. Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent. In: Journal of Mathematical Analysis and Applications, Vol. 464, no.2, p. 1184-1202 (2018). doi:10.1016/j.jmaa.2018.04.047.
Battaglia, Luca ; Van Schaftingen, Jean. Groundstates of the Choquard equations with a sign-changing self-interaction potential. In: Zeitschrift für angewandte Mathematik und Physik, Vol. 69, no.3, p. 86 (2018). doi:10.1007/s00033-018-0975-0.
Ruiz, David ; Van Schaftingen, Jean. Odd symmetry of least energy nodal solutions for the Choquard equation. In: Journal of Differential Equations, Vol. 264, p. 1231-1262 (2018). doi:10.1016/j.jde.2017.09.034.
Bellazzini, Jacopo ; Ghimenti, Marco ; Mercuri, Carlo ; Moroz, Vitaly ; Van Schaftingen, Jean. Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces. In: Transactions of the American Mathematical Society, Vol. 370, no.11, p. 8285-8310 (2018). doi:10.1090/tran/7426.
Bousquet, Pierre ; Ponce, Augusto ; Van Schaftingen, Jean. Weak approximation by bounded Sobolev maps with values into complete manifolds. In: Comptes Rendus Mathematique, Vol. 356, no. 3, p. 264-271 (2018). doi:10.1016/j.crma.2018.01.017.
Moroz, Vitaly ; Van Schaftingen, Jean. A guide to the Choquard equation. In: Journal of Fixed Point Theory and Applications, Vol. 19, no.1, p. 773-813 (2016). doi:10.1007/s11784-016-0373-1.
Schikorra, Armin ; Spector, Daniel ; Van Schaftingen, Jean. An L¹-type estimate for Riesz potentials. In: Revista Matematica Iberoamericana, Vol. 33, no.1, p. 291-303 (2017). doi:10.4171/rmi/937.
Van Schaftingen, Jean ; Dekeyser, Justin. Approximation of symmetrizations by Markov processes. In: Indiana University Mathematics Journal, Vol. 66, p. 1145-1172 (2017). doi:10.1512/iumj.2017.66.6118.
Chanillo, Sagun ; Van Schaftingen, Jean ; Yung, Po-Lam. Bourgain–Brezis inequalities on symmetric spaces of non-compact type. In: Journal of Functional Analysis, Vol. 273, no.4, p. 1504-1547 (2017). doi:10.1016/j.jfa.2017.05.005.
Petrache, Mircea ; Van Schaftingen, Jean. Controlled Singular Extension of Critical Trace Sobolev Maps from Spheres to Compact Manifolds. In: International Mathematics Research Notices, Vol. 2017, no.12, p. 3647-3683 (2017). doi:10.1093/imrn/rnw109.
Bousquet, Pierre ; Ponce, Augusto ; Van Schaftingen, Jean. Density of bounded maps in Sobolev spaces into complete manifolds. In: Annali di Matematica Pura ed Applicata (1923 -), Vol. 196, no. 6, p. 2261–2301 (2017). doi:10.1007/s10231-017-0664-1.
Battaglia, Luca ; Van Schaftingen, Jean. Existence of Groundstates for a Class of Nonlinear Choquard Equations in the Plane. In: Advanced Nonlinear Studies, Vol. 17, p. 581-594 (2017). doi:10.1515/ans-2016-0038.
Ponce, Augusto ; Van Schaftingen, Jean. Gauge-measurable functions. In: Universita degli Studi di Trieste. Istituto di Matematica. Rendiconti, Vol. 49, no. n/p, p. 113-135.
Ghimenti, Marco ; Moroz, Vitaly ; Van Schaftingen, Jean. Least action nodal solutions for the quadratic Choquard equation. In: Proceedings of the American Mathematical Society, Vol. 145, no.2, p. 737-747 (2016). doi:10.1090/proc/13247.
Fournais, Søren ; Le Treust, Loïc ; Raymond, Nicolas ; Van Schaftingen, Jean. Semiclassical Sobolev constants for the electro-magnetic Robin Laplacian. In: Journal of the Mathematical Society of Japan, Vol. 69, p. 1667-1714 (2017). doi:10.2969/jmsj/06941667.
Van Schaftingen, Jean ; Xia, Jiankang. Standing waves with a critical frequency for nonlinear Choquard equations. In: Nonlinear Analysis, Vol. 161, p. 87-107 (2017). doi:10.1016/j.na.2017.05.014.
Bonheure, Denis ; Cingolani, Silvia ; Van Schaftingen, Jean. The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate. In: Journal of Functional Analysis, Vol. 272, no.12, p. 5255-5281 (2017). doi:10.1016/j.jfa.2017.02.026.
Chanillo, Sagun ; Van Schaftingen, Jean ; Yung, Po-Lam. Variations on a proof of a borderline Bourgain-Brezis Sobolev embedding theorem. In: Chinese Annals of Mathematics. Series B, Vol. 38, no.1, p. 235-252 (2017). doi:10.1007/s11401-016-1069-y.
Chanillo, Sagun ; Van Schaftingen, Jean ; Yung, Po-Lam. Applications of Bourgain–Brézis inequalities to fluid mechanics and magnetism. In: Comptes rendus - Mathématique, Vol. 354, no.1, p. 51-55 (2016). doi:10.1016/j.crma.2015.10.005.
Van Schaftingen, Jean ; Xia, Jiankang. Choquard equations under confining external potentials. In: NoDEA Nonlinear Differential Equations and Applications, Vol. 24, no.1, p. 1–24 (2016). doi:10.1007/s00030-016-0424-8.
Convent, Alexandra ; Van Schaftingen, Jean. Geometric partial differentiability on manifolds: The tangential derivative and the chain rule. In: Journal of Mathematical Analysis and Applications, Vol. 435, no.2, p. 1672-1681 (2016). doi:10.1016/j.jmaa.2015.11.036.
Mercuri, Carlo ; Moroz, Vitaly ; Van Schaftingen, Jean. Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency. In: Calculus of Variations and Partial Differential Equations, Vol. 55, no.6, p. 58 (2016). doi:10.1007/s00526-016-1079-3.
Convent, Alexandra ; Van Schaftingen, Jean. Intrinsic colocal weak derivatives and Sobolev spaces between manifolds . In: Annali della Scuola Normale Superiore, Vol. 16, no.1, p. 97-128 (2016). doi:10.2422/2036-2145.201312_005.
Ghimenti, Marco ; Van Schaftingen, Jean. Nodal solutions for the Choquard equation. In: Journal of Functional Analysis, Vol. 271, no.1, p. 107-135 (2016). doi:10.1016/j.jfa.2016.04.019.
Chemin, Alexandre ; Henrotte, François ; Remacle, Jean-François ; Van Schaftingen, Jean. Representing Three-Dimensional Cross Fields Using Fourth Order Tensors. In: Roca, Xevi; Loseille, Adrien (Ed.), 27th International Meshing Roundtable, Springer, Cham: Switzerland AG, 2019. 978-3-030-13991-9. doi:10.1007/978-3-030-13992-6_6.
Chanillo, Sagun ; Van Schaftingen, Jean ; Yung, Po Lam. The Incompressible Navier Stokes Flow in Two Dimensions with Prescribed Vorticity. In: Sagun Chanillo, Bruno Franchi, Guozhen Lu, Carlos Perez, Eric T. Sawyer, Harmonic Analysis, Partial Differential Equations and Applications. In Honor of Richard L. Wheeden (Applied and Numerical Harmonic Analysis ), Springer, 2017, p. 19-25. 978-3-319-52741-3. doi:10.1007/978-3-319-52742-0_2.