Yves Dufrêne

 

Postal Address :
LIBST
Croix du Sud, 4-5
Bte L7.07.07
1348 Louvain-la-Neuve
Belgium

E-mail : Yves Dufrêne

Tel. +32 10 47 36 00
Secretariat +32 10 47 35 88

Location :
LIBST
Carnoy Bldg (SC12)
Floor 04, room C455
Campus Louvain-la-Neuve

 

 

For students and newcomers see this brochure in EN or FR

 

Microbiology at the nanoscale

Our goal is to push the limits of force nanoscopy beyond state-of-the-art to establish this nanotechnology as an innovative platform in biofilm research. By developing new tools, we wish to understand how pathogens use their surface molecules to guide cell adhesion and trigger infections, and to develop anti-adhesion strategies for treating biofilm-infections.

"Knowledge is limited. Imagination encircles the world.” ― A. Einstein

LATEST NEWS

May 9, 2022

Adhesion of Staphylococcus aureus to human skin is exceptionally strong

Staphylococcus aureus is a bacterial pathogen that colonizes the skin and the nose of humans, and which can cause various diseases, such as eczema (atopic dermatitis). This microbe has become resistant to multiple antibiotics, meaning there is an urgent need to fully understand the molecular mechanisms leading to host colonization and infection, and to find alternative antibacterial therapies. In collaboration with the Trinity College Dublin, a UCLouvain team has discovered that S. aureus uses a special surface protein, FnBPB, to specifically bind to the human skin surface protein loricrin. Using nanotechniques, they found that the bond formed between FnBPB and loricrin is exceptionally strong, much stronger than the vast majority of other biomolecular bonds. Remarkably, the bond strength increases dramatically when subjected to physical stress, as occurring when we wash ourselves or during skin epidermidis turnover, pointing to an unusual "catch bond" adhesion and colonization mechanism. Under mechanical tension, biological complexes typically slip apart easily ("slip bonds"), whereas "catch bonds" counterintuitively become stronger. The FnBPB-loricrin interaction, reported in Nature Communications, provides S. aureus with a means to firmly attach to the epidermidis under physiological shear stress, increasing its ability to colonize the human skin and cause infection. This mechanism represents a promising target for anti-adhesion therapy, i.e. the design of inhibitors capable to efficiently prevent staphylococcal-skin interactions. The study was funded by an ERC advanced grant aiming at using nanotechnology to understand and overcome the adhesion of S. aureus to biomaterials and host tissues ( https://futurumcareers.com/using-nanotechnology-to-overcome-the-adhesion-of-the-bacterial-pathogen-staphylococcus-aureus).

September 23, 2021

New methods review: AFM force spectroscopy of single cells

Physical forces and mechanical properties have critical roles in cellular function, physiology and disease. Over the past decade, atomic force microscopy (AFM) techniques have enabled substantial advances in our understanding of the tight relationship between force, mechanics and function in living cells and contributed to the growth of mechanobiology. In the new journal Nat Rev Methods, the nBio group publishes together with two other teams a comprehensive overview of the use of AFM-based force spectroscopy (AFM-FS) to study the strength and dynamics of cell adhesion from the cellular to the single-molecule level, spatially map cell surface receptors and quantify how cells dynamically regulate their mechanical and adhesive properties. We first introduce the importance of force and mechanics in cell biology and the general principles of AFM-FS methods. We describe procedures for sample and AFM probe preparations, the various AFM-FS modalities currently available and their respective advantages and limitations. We also provide details and recommendations for best usage practices, and discuss data analysis, statistics and reproducibility. We then exemplify the potential of AFM-FS in cellular and molecular biology with a series of recent successful applications focusing on viruses, bacteria, yeasts and mammalian cells. Finally, we speculate on the grand challenges in the area for the next decade.