Antoine Laterre
PhD student
Ir. at UCLouvain in 2021

Main project: Carnot batteries as effective sector-coupling systems for heat and power: techno-economic analysis and robust optimisation
Funding: Boursier UCL
Supervisor(s): Francesco Contino

The first concepts of Carnot batteries appeared in the early 2010s. These systems propose to use excess energy from the grid to produce heat and store it in thermal form. This energy can then be returned in the form of electricity through thermal cycles. By their very nature, these “batteries” allow for efficient coupling between electrical and thermal systems, which is an asset regarding the challenges prescribed by the energy transition. For example, they can take advantage of waste heat (< 100°C) to increase their power output to power input ratio to values above 100%. The heat they generate can also be used for other purposes (e.g. industrial).

Theoretical studies to date have shown that this technology has great potential for development. However, they also reveal that the performance can deteriorate severely when certain parameters deviate slightly from the optimal design conditions (i.e. variation of waste heat temperature, of isentropic efficiencies, etc.). In order to evaluate their real potential, this project proposes to integrate, by simulation means, the uncertainty dimension on these parameters to quantify more efficiently the sensitivity of Carnot batteries to them.

To identify the designs that are robust to uncertainty and to evaluate the actual techno-economic performance of these systems, Uncertainty Quantification and Robust Optimisation (optimisation under uncertainty) techniques will be applied. Using metrics such as LCOS, we will assess with more certainty the potential of this technology compared to other storage systems, such as batteries.

IMMC main research direction(s):

energy storage
numerical simulation, experimental models
thermal engines

Research group(s): TFL
Collaborations: Collaboration with LaboThAp - ULiège, Prof. V. Lemort


Recent publications

See complete list of publications

Conference Papers

1. Gaitanis, Angelos; Laterre, Antoine; Contino, Francesco; Ward De Paepe. Towards Real Time Transient mGT Performance Assessment: Effective Prediction Using Accurate Component Modelling Techniques. In: Proceedings of Global Power and Propulsion Society. Vol. GPPS Xi’an21, p. 8 (2022). 2022 xxx.